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ABSTRACT 

We introduce a TeichmiEler space for a Riemann surface with n distinguished 
points. If n = 0 this is the ordinary Teichmiiller space. For n = I, in special 
cases, it represents the Teichmtiller curve and the universal covering space of 
the Teichmii~ler curve. The corresponding modular groups and Riemann spaces 
are investiga:ed. Some purely topological applications on homotopy of self- 
maps of surfaces are obtained. 

In this paper  we outline an extension of  the theory of  Teichmfiller spaces as 

developed by Ahlfors [2] and Bers [8]. The extension of  the theory allows us to 

generalize as well as simplify the proofs of  the results o f  Bers [9] on the space of  

moduli of  a Riemann surface. We obtain descriptions of  the mapping class groups 

of  a Riemann surface similar to those obtained by Birman [11], [12]. We also 

obtain some purely topological applications concerning homotopy classes of  

topological self-mappings of  Riemann surfaces. 

We shall describe our results for Riemann surfaces of  finite type. The extension 

to the more general situation as well as complete proofs will appear elsewhere, 

This paper is, in a sense, foundational. It unifies various concepts that have 

often appeared in the literature. For example, the Teichmtiller space, the universal 

curve over the TeichmiJller space, as well as the covering space of  the universal 

curve, are all special cases of  the same generalized Teichmfiller space that we 

introduce. Many problems are suggested by this generalization. We will list some 

of  these, indicate their current state, and continue to investigate them in sub- 

sequent papers. 
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In addition to the papers of Bers [9] and Birman [11], 112], this work touches 

(tangentially at times) investigations of Engber [17], Epstein [18], Etrle [14] 

Marden [20], Bers-Greenberg [10], among others. 

1. TeichraUller spaces of n-pointed Fuchsian groups 

Let U be the upper half plane, and Aut U the group of conformal self-mappings 

of U: 

Aut U ~- SL(2, ~) / +. I 

o r  

g e Aut U r g(z) - 
a z + b  
cz + d '  

for z e  U; a,b,c, d e R ;  a d -  bc = 1. 

(Here E is the real line, SL(2, R) the group of 2 • 2 real matrices with determinant 

1, and I the 2 x 2 identity matrix.) 

Let G c Aut U be a finitely generated Fuchsian group of the first kind. (Here- 

after, unless otherwise indicated, all Fuchsian groups are assumed to be finitely 

generated of the first kind and operating on U.) 

Let M(G) denote the set of Beltrami coefficients for G (open subset in a Banach 

space); that is,/~ e M(G) is an equivalence class of measurable functions (modulo 

functions vanishing a.e.) such that 

(i) l~(gz) g'(z)/g'(z) = #(z), all g e G, a.e. z e U, and 

(ii) ll~tlt = sup {[ #(z) t ; z e U }  < 1. 

For t te  M(G), let w, be the unique normalized/~-conformal self-mapping of U 

which fixes 0, 1, oo (see Ahlfors-Bers [3]), and X, the isomorphism of G onto 

the Fuchsian group G, = w~Gw~ 1 defined by 

2G(g) = w~o go w~ -1, for g e O. 

We shall say that & = {G; zD "", zn} is an n-pointed Fuchsian group, provided 

G is a Fuchsian group and z 1, .-., z n are n-inequivalent points of U which are not 

fixed points of any elliptic element of G. Of course, the 0-pointed group 

= {G; - } will be identified with G. Let 

U~ = (z e U; z is not an elliptic fixed point of O 

and z # g(zj) for all g e G, j = 1, ..., n}. 
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The Riemann surface U,/G is a compact surface of genus g from which m points 

have been removed with m > n. 

Let 

~: U ~ U/G 

be the natural projection, and note that n is unramified over U~/G. Let p,, ..., Pm 

be the punctures on U~/G, and set v, to be the order of the stability subgroup of 

n- t(pi  ). (v, = oo ifpi  ~ U/G.) The (m + 1)-tuple 

(g; v~, ..., Vm) 

is called the signature of ~. Note that we may assume, and always do, that 

1 =<v 1 =<v 2 =<'"__--<Vra<= o0. 

The triple (g, n, m - n) will be called the type of f#. 

Let us call two n-pointed Fuchsian groups ~ = {G;zl,. . . ,z~} and f~' 

= {G'; z~, ...,z'} conjugate if there exists an ~ A u t  U such that 

G' = ~G~ -1, 

and for j = 1,..., n 

z~ = ~t(gj z~(j~), with gl ~ G, 

where a is a permutation of {1,..., n}. 

Let K be a subgroup of G. For #, v ~ M(G), we shall say that p is (~, K)-equivalent 

to # (writing either p ~ v(fg, K) or # ~ v) provided 

(i) X, = Xv, and 

(ii) w~(z i) is K~ (=  Kv)-equivalent to w~(zj) j = 1,..., n. 

Note that, in the future, the pair (fr { 1 }) will be abbreviated as ft. 

REMARK. Observe that 

(1) p~v(fg)c~w,  = w~on RO{g(z~);g~G,  j = l , . . . ,n}.  

DEFINITION 1.1. The set of equivalence classes of Beltrami coefficients under 

the equivalence relation above is the Teichmiiller space of f~ modulo K, T(fr K). 

It is topologized and given in analytic structure by requiring the projection 

~ , r  = ~: M(G)-~ T(f~,K) 

to be continuous and holomorphic. 

REMARK. We have the obvious projections which are complex analytic: 
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T(fg) ~ T(fg, K) --. T(~,  G) ---, T(G). 

CONVENTION. We shall restrict our attention to the special case where K is a 

normal subgroup of G. For, in this case, the pairs 

(fr K) and (~ ' ,  K) 

(for ~ =  {G;z t , . . . , z , }  and f~'={G;o,(z~(l)),. . . ,O,(z~(,))}, where a is a 

permutation of {1, ..., n} and Oje G for j = 1, ..., n)give the same Teichmtiller 

spaces, and we will hence identify such pairs. 

The work of TeichmUller [24], [25], Ahlfors [2], and Bers [8] shows that T(G) 

is a finite dimensional, complex analytic manifold which is homeomorphic to a 

Euclidean cell. 

For fixed z c U 

M(G) ~ g w, w.(z) ~ U 

is a real analytic map but it is not complex analytic (Ahlfors-Bers [3]). To ob- 

tain a corresponding complex analytic map, let w" (for # �9 M(G)) be the unique 

normalized automorphism of the complex sphere that is #-conformal in U and 

conformal in the lower half plane, L. Bers [7] shows that 

and Ahlfors-Bers [3] show that 

M(G) ~l.t +-* w"(z) ~ C for fixed z �9 C 

is a holomorphic function. 

Furthermore, the group G ~' = (w")G(w") -1 is a quasi-Fuchsian group (a 

Klcinian group of MObius transformations) that fixes the interior of the quasi- 

circle w~(R)); the domains w~(U) and w"(L) depend only on ~ ( # ) .  Also for 

arbitrary (fr K), we have that 

p ~ v(fg, K ) ~ w " l L =  w'[L for # , v � 9  

and that wU(zj) is KU-equivalent to w*(zi) for j = 1, ..., n. 

2. Teiehmiiller spaces of n-pointed Riemann surfaces 

By an n-pointed Riemann surface 5" = {S; xx, ...,x,} we mean a Riemann 

surface S of finite type (that is, a compact surface with a finite number of punctures), 

on which we distinguish n distinct points {xt, ..., x,}, n > 0 .  (If n = 0, we 

identify (S; - }  with S.) By a homeomorphism W between two n-pointed surfaces 
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6 a = {S; xl , - . . ,x ,}  and S:'  = {S'; x;, . . . ,x'}, we mean a homeomorphism W of 

S onto S' such that for some permutation tr of {1, ..., n} we have 

W ( x j )  = x'~j~, j = 1, . . . ,  n. 

Fix an n-pointed Riemann surface, S# = {S, xl, "",Xn}. Let wl and w2 be two 

quasiconformal homeomorphisms 

(2) wj: S~'--+S:j (j = 1,2). 

We shall say that w, and w 2 are, respectively, Teichmfiller equivalent and weakly 

equivalent if there exists a conformal map 

f :  6a I ---> 6:2 

such that 

W =  w-21 o f o w , : Se-- ,  y '  

is homotopic to the identity respectively by a homotopy which keeps xl, . . . ,x ,  

fixed or by a homotopy whose ends keep x~, ..., x n fixed. Note that, for equivalence, 

the homotopy of W to the identity must keep the distinguished points fixed while, 

for weak equivalence, W only need keep the distinguished points fixed. 

DEFINITION 2.1. The set of Teichmiiller (or weak) equivalence classes of 

quasiconformal homeomorphisms of ~ forms the Teichmfiller space (or weak 

Teichmfiller space) of 6:, in symbols T(6:) (or To(6e)). 

PROPOSITION 2.2. Let ~ = {G; zl , . . . ,z ,}  be an n-pointed Fuchsian #roup 

with G fixed point free. 

Let 

n: U -+ U /G 

be the natural holomorphic projection, and set 

We have 

ae = {U  /G; n(z l ) ,  ...,n(z,)}. 

and 

T( ~) ~- T(,.9~), 

T( f~, G) ~- To(S: ). 
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3. Modular groups 

Fix an n-pointed Fuchsian group f: (where f~ = {G; zl, ..., z,}), and a normal 

subgroup K of G. Let w be a quasiconformal self-mapping of U (which is not 

necessarily normalized) that is compatible with G (that is, wGw-1 is once again a 

Fuchsian group). The mapping w induces an allowable mapping 

w*: T(fg, K) -.+ T(wfgw - t, wKw-  t), 

where 

and 

W~W -I = (wGw-l; w(zl) , ..., w(zn)}, 

Here [w~]t~,r ~ is the (~, K)-equivalence class of/~ ~ M(G) and ~[#] is the uniquely 

determined M6bius transformation so that ~[#]o w~ o w- t  is normalized (hence 

a w, for some v ~ M(wGw- ' ) ) .  

DEFn'~n'mN 3.1. The modular group of (~,K), Mod(~,K),  is the group of 

allowable self-mappings of T(~, K). 

Thus, elements of Mod(~, K) are induced by quasiconformal automorphisms 

of U that conjugate (~, K) into itself. (Recall the identification of such pairs 

introduced in Section 1.) 

Similarly, any quasiconformal homeomorphism 

W: S: -+ S#' 

between n-pointed Riemann surfaces induces allowable mappings 

W*: T(S+') --+ T(S#') 

and 
W*: To(9") - ,  T0(S:') 

by sending an equivalence class of Wl, as in (2), into the equivalence class of 

wig W -1. As above, we obtain groups ModS# and Modo 5:, respectively, the 

Teichmffller modular group of S# (allowable self-mappings of T(S:))and the 

weak modular group of 5 # (allowable self-mappings of To(S#)). From the identi- 

fication of Teichmiiller spaces given by Proposition 2.2, we have 

Mod fg ~ ModS:, 

and 
Mod(fg, G) ~ ModoS:, 
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whenever G acts freely. 

Note that every allowable mapping between Teichmiiller spaces is a biholomor- 

phic homeomorphism. Furthermore, if fr and ~ '  are two pointed groups with the 

same signature, then there exists a quasiconformal automorphism w of U such that 

~r = W~W-I. 

DEFINmON 3.2. The TeichmiJller spaces and modular groups for signature 

(g; vl, "",Vm) are defined by 

T(g; vt, "",Vm) = T(f~), 

Mod (fl; vl,..., Vm) = Mod f~, 

where ff is a pointed group whose signature is (g; v~, . . . ,  •m)" 

4. Isomorphism theorems 

Let f# = {G; zl, "", z,} be an n-pointed Fuchsian group. Choose a holomorphic 

universal covering map 

h: U ~  U~ 

with covering group H. Let F be the Fuchsian model of (G, U,) via h, that is, 

F =  { ? ~ A u t U ; h o ? = g o h  for some 9~G}. 

(H is, of course, the subgroup of F consisting of those ? with g = 1.) Hence we 

have an exact sequence of groups and group homomorphisms 

{1} - ,  U--.  r - ,  G - ,  {1}. 

There exists a canonical, complex analytic, surjective map- THEOREM 4.1. 

ping 

(3) h*: T(F) --* T(~). 

Furthermore, h* is injective (thus an isomorphism) provided either that 

(i) f~ = G, or 

(ii) G does not contain elliptic elements and n = 1. 

In all other cases h* is a non-trivial (that is, non-injective) universal 

covering map whose covering 9roup is a fixed point free subgroup of Mod F. 

We outline the proof of the theorem, since it gives the right setting for a dis- 

cussion of various other questions. Define a complex linear isomorphism h which 

is isometric: 
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h: M(F) ~ M(G) 

by setting 

. . .  h'(z) �9 M(I-), �9 U. (4) (hla) tnz) h--~) = p(z). for # z 

It is quite easy to check that the above definition leads to a commutative diagram 

as shown in Fig. 1. where h. is a (uniquely defined) holomorphic universal 

covering map of U~h, = wh,(U~), and fib, = {Ghj,;Wh~.(Zl),'".Wh,(Z.)}. One 

checks that/~ ~ v(F) (for p. v �9 M(F))implies that hp .., hv(fg). Thus the map h of 

(4) projects to a mapping h* between Teichmiiller spaces as required in (3). The 

mapping h* is holomorphic and surjective. 

U ,~U 

l h Wh, u lh~ 
u: - u# h~ 

Fig. 1 

The mapping h of (4) is a one-to-one mapping of the set of Beltrami coefficients 

for F that satisfy the Teichmiiller condition onto the set of Beltrami coefficients 

for ff that satisfy the Teichmiiller condition. (These coefficients arise from 

integrable quadratic differentials for G that are allowed to have poles at the points 

zl,...,z~.) Thus by the TeichmiJller existence and uniqueness theorem (see, for 

example, Ahlfors [1] or Bers [5]), part (i) of Theorem 4.1 is established. (Another 

proof will follow from the method used for the general case outlined below.) 

With little effort we have just reproven the Bers-Greenberg isomorphism theorem 

[10] for finitely generated groups (this is also established by Marden [20]). 

To continue with the general case, let 

Cov h = {p �9 M(l"); h# ,-~ 0(ff)}. 

It is easy to check that for each /~�9 there exists a f l �9  U such that 

fl o w~ conjugates F into itself and thus determines an element (fl o w~)* of 

Mod F which is independent of the choice of ft. The subgroup of all such elements 

of Mod F will be denoted by Coy h*. The group Covh* acts freely on T(F); 

it is the covering group of h*. Thus 
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T( r ) /Cov  h* ~ T(~), 

and hence Coy h* is trivial if and only if T(fr is simply connected. 

To finish the proof of Theorem 4.1, we introduce the fiber spaces 

and 
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F"(G) = {(~, () ~ T(G) x C";  z = Oa(/~), # ~ M(G), 

= ((~, . . . ,  ( , )  ~ w"(U)"}, 

F~(G) = {(v, 0~F" (G) ;  ( = ((l,'..,(,)~wU(U) ", where 

(j is not an elliptic fixed point of G ~, for j = 1,..., n, and 

(i ~ g((j) for all g ~ G u whenever i # j,  i, j = 1,..., n}. 

REMARK. The fiber spaces F"(G) and Fg(G) depend only on the signature of 

G. Hence F(g; vl, ...,v,,) is defined for signature (9; vl, .-., v,,) with vj > 1 all j .  

LEMMA 4.2. For any fr = {G; z l ," ' , z ,} ,  we have 

T(f#) " F~(G) 

Since FI(G) = F~(G) is simply connected for G without torsion, part (ii) has 

been established. Furthermore, the group Cov h* is isomorphic to the fundamental 

group of  F"o(G) which is topologically a product 

n T(G) x (Uo)0, 

where 

n 
( t :~)o = (~ = ( ~ ,  . . . ,~ , )~  t :~ ;  

~t ~ g(~j) for all g ~ G, i ~ j, i, j = 1,..., n). 

The two special cases discussed above give the isomorphism theorems of Bers- 

Greenberg [10] and Bers [9]. 

COROLLARY 4.3. I f  G 1 and G2 are Fuchsian groups of the first kind which are 

finitely generated, then T(G1) ~- T(G2) whenever UG,/Gx ~- U62/G2. (The 

Teichmiiller spaces of two groups of type (g, O, m) are isomorphic.) 

COROLLARY 4.4. I f  G and Gx are Fuchsian groups of the first kind which are 

finitely generated without torsion such that U /G is conformally equivalent to 

U /G~ punctured at one point, then 

T(G) ~- F(G1) = FI(G1). 

Restated, 
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T(g; 0% ..., oo) ~- F(g; co, ..., oo). 

(m + 1)-times m-times 

COROLLARY 4.5. I f  f9 is of type (g, n, m -- n), then T(fY) is a complex analytic 

manifold of dimension 3 g -  3 + m; in fact it is a bounded submanifold of 
C3a-3 +m. 

To describe T(ff, K), we must study the modular group, Mod fr 

Every quasiconformal automorphism W that conjugates ff into itself, fixes U~, 

and hence can be lifted to an automorphism w of U that conjugates F into itself. 

The relation between W and w is given by 

h o w  = Woh.  

This element w induces a point o f M o d  F. Let us denote by Mod (F, if) the subgroup 

of  Mod F so produced. We then have the exact sequence 

{1} Cov h* Mod (r,  - ,  Mod  {1}, 
n 

Mod 17' 

and complex analytic isomorphisms 

T(F)/Cov h* ~ T(ff), 

T(F) /Mod (r ,  N) ~ T(ff) /Mod ft. 

Furthermore, Mod (F, ~) is of finite index in Mod F. To compute the index o! 

Mod (F, fr in Mod F we consider only the non-exceptional cases (for the sake of 

brevity), that is, those cases where the signature of neither F nor ff appear in the 

table in the first remark of Section 5. Let m be the number of punctures in U~/G. 

Call two punctures equivalent if the stability subgroups of  their preimages in U are 

isomorphic. Let Pr, be the permutation group on m letters, and Po,,, the subgroup 

of  P,, that preserves each equivalence class. 

In the non-exceptional cases there exists a surjective group PROPOSITION 4.6. 
homomorphism 

such that 
0: Mod F-~  Pro, 

O- l(Po.,,) = Mod (F, if). 

Let ff have signature (g; vl, "-,vm), and define for each 1 (1 <_ I _< oo), 

el = card {j; D = l}. 
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COROLLARY 4.7. The index oS Mod (F, f~) in Mod F is 

To study the group Mod fr let G(n) denote the twisted product of P,, and G", 

where we define 

(a; g 1,'" ", g,)" (T; ~1,.. ", ~'~) = (a~; g ~ o ~,<,_, (~),..., g, o ~- , ( , ) ) ,  

for tr, "r E P,,, g j, 7i ~ G, i, j = 1, ..., n. 

The group G(n) acts as a group of holomorphic automorphisms on U ~ (also (U~)o) 

by 

(~; g l , ' " ,  g.)  (C1,-'-, C.) = O A ~ -  , .)),  "", g~(C=-,(.))). 

We let No(G) denote those elements fl in N(G), the normalizer of G in Aut U, 

such that/7* = 1 as an element of Mod G. The group G is then a normal subgroup 

of No(G ). We consider G as a subgroup of G(n) via the inclusion 

G a g  ~(1;  g, . . . ,g )~G(n) .  

We let No(G ) act on U" (also on (U~)o) via 

g(CI,'", (.) = (gCl,'", g(.), for g e No(G), 

and observe that this action is compatible with the inclusion of G into G(n). Let 

G(n) be the smallest subgroup of the group of complex analytic automorphisms o f  

U n generated by No(G ) and G(n). We observe that every element of G(n) can be 

written (not uniquely) as 

hE, with h ~ No(G), X E G(n). 

If  Z = (tr; g l , " ' ,  g,), then 

and 

where 

hZ = (a; hogl , . . . , hog~) ,  

Y h = ( . ;  h o g L . . . , h  o g.~), 

g h =  h - l o g e h ,  for heNo(G) ,  g e G .  

Note also that we have the exact sequence of groups and group homomorphisms 

{~}-. a ( , ) - .  C(n)- .  No(G)/G - .  {1}. 



248 I. KRA Israel J. Math., 

THEOREM 4.8. There is an exact sequence of groups and group homomor- 

phisms of the form 

{1}~G(n)  (~)l:~ Modff  ~ M o d G ~ { 1 } .  

Again, we only outline the construction of the various homomorphisms. For each 

select w = wu(t) such that 

and 

Z = (a; gD "",gn)~ G(n), 

~(z) ~ o(G), 

w ( z i  ) - = go(j) (z~(i)), for j = 1,..., n. 

Let (~)lY~ - w* (as an element of Mod if). 

Next i fg ~ No(G), choose # =/z(9) ~ M(G) such that p(g) .~ 0(G) and w = g o c% 

satisfies 

w ( z j )  = z j ,  j = 1 , . . . ,  n. 

Set (~.)lg=w* as element of Mod fr One must verify that (~)lis well defined on 

~7(n). 
To define (~)2 let w be a quasiconformal automorphism of U that conjugates 

into itself. Since w conjugates G into itself, it induces an element of Mod G as well 

as of Mod fr The surjectivity of (~)2 is obtained by observing that an arbitrary 

element of Mod G is induced by an automorphism that conjugates G into itself 

and fixes zl, ..., z n. 

We next describe the action of Modfr  on F~(G) via the isomorphism of Lemma 

4.2. It is quite clear that in analogy to the previous definition, we have for each 

# ~ M(G) a group 
G~(n) 

that acts holomorphically on 

n WttfTTn'~ UGP ~ I VG;, 

Furthermore, both the group and the space on which it acts depend only on 

0~(#) ~ T(G). There is a natural isomorphism 

d ( n )  ~ r, ~ r,~ ~ G~(n) 

under which G(n) is taken onto G~(n). This group isomorphism is compatible 
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with the isomorphism of complex manifolds of  Lemma 4.2, in the sense that for 

E ~ G(n), its action as an element of Mod ~ on Fn(G) is given by 

here # s M(G), ( = ((t ,  "", (,) e w~'(U) ". Note also that Y.(F~(G)) = Fno(G). 

Next we take an element g ~ No(G ) and consider its action on F"(G). It is given by 

(5) ([w,]G, 0 ~ ([w,]G,g"0 with g" = w" o g o (w") -1. 

Again, #(F~o(G)) = F'o(G). 

Finally we examine the action on F~o(G) of the subgroup of  Mod ~ induced 

by quasiconformal automorphisms of U that are compatible with G, and fix 

z=(zl ,  "', z~). For such a w, 

W* (6) ([wu]G, 0 ~ ([~[#]~ h..oa[/z] ohT~(O), 

where a[#] ~Aut U is chosen so that a[#] o w~ o w -1 is normalized and hence 

w.u for some *# ~ M(G), and h v for v E M(G), is the unique conformal map so that 

w ~ = hv  o w , .  

Again, w* acts on a F~(G) as well as F"(G). 

Note that the group G" is a subgroup of  G(n) and that it acts freely on F~(G). 

As a consequence of this observation we have Corollary 4.9. 

COROLLARY 4.9. Let f~ be an n-pointed Fuchsian group, f~ = {G; z l , . . . ,  zn} , 

and K a subgroup of G; then 

T(f~, K) ~- fg(G)/K". 

In particular, if f~ is of type (g,n,m -n) ,  then T(f~,K) is a 3 g - 3  + m dimen- 

sional complex manifold. 

COROLLARY 4.10. There is an exact sequence of groups and group homomor- 

phisms of the form 

{1} --, G n --, M o d ~  --, Mo d  ( ~ ,  G) --, {1}. 

A similar description may be obtained of  the group Mod(~ ,  K) for arbitrary 

normal subgroups K of G. This group is a factor group of a subgroup of Mod f#. 

Consider the special case where f~ = {G; z} and G is fixed point free. Then we 

have the following complex analitic projections 
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T(~) - - ~  T(fg, G) ~i > T(G). 

Note that T(f~,G) is the universal curve over the TeichmiiUer space T(G), 

(rc~-l(z) is the Riemann surface represented by z or ~c~1(~) = z), and T(~) is the 

universal covering space of the universal curve. 

Assume that [wu] ~ is a fixed point of w* (as an element of  Mod G) REMARK. 

in (6). Thus 

or 

[w.]G = o w,, o w-']o, 

h., = h,. 

In this case cr e N(G~,) and hence ct = h u o cr o h~,- is N(G~'). 
Conversely, for each ct ~ N(G~'), there exists a w* e Mod G such that [w~,]a is a 

fixed point of  Mod G; the action of w* as an element of  Modfg on the fiber over 

[w,] G is precisely (assuming w(z)=z) 

w*([%]G, 0 = ([w,]~, ~ )  for C e w~'(Un). 

5. Riemann spaces 

Let, as before, 

= {G; z l ," ' ,zn}  

be an n-pointed Fuchsian group. We define the Riemann space of ~ by 

R(~) = T(~) /Mod  f#. 

Since Mod ~ acts discontinuously on T(f~), it follows from a theorem of Cartan 

[13] that R(f#) is a normal complex space. R(fg) represents the set of conjugacy 

classes of n-pointed Fuchsian groups. It depends only on the signature of  fg. 

Hence we may define 

R(g; vl,..., Vm) 

as R(~) for some group & of signature (g; vl, "", vm). 

Let F be the Fuchsian model of (G, U~). Consider the complex analytic varieties 

and mappings shown in Fig. 2, where (7(n) |  G denotes the exact sequence 

decomposition of  Mod ~ obtained by Theorem 4.8. 

We describe each map in Fig. 2. 

(i) The map rq is the finite-sheeted surjective covering induced by the inclusion 

Mod (F, fg) c Mod F. This map is injective if and only if U~/G has one equivalence 

class of punctures. Thus zq is the identity map only if fr has signature (g; v, ..., v). 
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R(P) = T(P)/Mod P 

T(P)/Mod (r,~) 

R(,~)= T(~)/Mocl~ 

Fn(G)/G(n 1(~ Mod G c Fn(G)/G(n)| Mod G 

R(G)= T(G)/Mod G 

Fig. 2 

(ii) The map n 2 is the canonical isomorphism induced by Theorem 4.1. 

(iii) The map n3 is the canonical isomorphism induced by the isomorphisms of 

Lemma 4.2 and Theorem 4.8. 

(iv) The map if4 is induced by the natural projection onto the first coordinate 

P > T(G). 

The fiber over a point �9 = OG(#) e T(G) (with # e M(G)) is the complex analytic 

space wU(U")/GU(n). This is nothing more than the n-dimensional symmetric 

product of wu(U)/G u factored by the group No(G~')/G ~'. The action of No(G)U/G ~' 

on the symmetric product is derived from (5). 

REMARK. The group No(G)/G is trivial except where G has one of the 

following signatures (see, for example, Singerman [-23]): 

(2; --) 

(1; v,v) , v > 2 ,  

(1; v) , v > 2, 

(0; v,v, kt,#), 2 < v < # < o o ,  

(0;v ,v ,#)  , 2 < v < l . t < o %  

(0 ;v ,p ,# )  , 2 < v < # < o o .  

In all cases the group is finite with an index less than or equal to 6. 

We continue with the description of  the mapping ~4- We describe the fiber 
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over a point �9 e R(G). If  z is the equivalence class of [w~] o s T(G) (with # ~ M(G)), 

then the fiber over z is the n-fold symmetric product of w~(U)/G ~ factored by 

N(G ~)/G ~. (If G has no torsion this is the full analytic automorphism group of 

w.(U) /G".) 
The map 7r 4 is, of course, the restriction of z~ 4 to F~(G)/G(n) | Mod G. The 

fiber over z, in this case, is the n-dimensional symmetric product of w~(U)/G" with 

the thick diagonal deleted, factored by N(GO/G ~. 

The above fibers can also be interpreted as positive divisors of degree n on 

various Riemann surfaces. 

In the special case where n = 1, we obtain a result of Bers [9]. 

THEOREM 5.1. Let (g; vl,...,vm) be a signature of a Fuchsian group. There 

exists a holomorphic surjection 

zc: R(g; 1, vl, ..., vm)-~ R(g; vl, ..-, v=), 

such that for ~ e R(g, vl,..., v,,), lr-1(0 is the reduced surface corresponding to ~. 

Furthermore, there exists a finitely sheeted holomorphic surjection 

p: R(g; ~k~'~_~) ~ R(g; 1, vl, ..., vm). 
Y 

(m + 1)-times 

In particular, for signature (g; oo, ..., oo), p is m + 1 sheeted. 

m-times 

If  G is any Fuchsian group then, by the reduced surface corresponding to G, we 

mean Uo/N(G). Note that the conformal type of the reduced surface depends 

only on the conjugacy class of G in Aut U. 

REMARK. For groups G of signature (g ; - )wi th  g => 2, an equivalent theorem 

was announced by TeichmiJller [26] and first proven by Baily [4]. 

Another interesting special case of the above construction is contained in 

Theorem 5.2. 

THEOREM 5.2. For every g >= 2, there exists a holomorphic surjection 

r~: g (g ;  ~ _ , - . ~ ) - ~  R(g; - )  

m-times 

such that, for rigid z ~ R(g ; - ), zc-l(z) is the m-fold symmetric product of 

with the thick diagonal deleted. 

It is easy to describe geometrically the mapping z~ of Theorem 5.2. A point 
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x ER(g; ~:_-LL~ } represents generically a compact surface of genus g with m 
i ,  

m-times 

punctures. The mapping 7r forgets the punctures and thus ~r(x)E R ( # ; - )  

represents a compact surface of genus g. 

6. Homotopy and isotopy classes of self-mappings of surfaces 

Let S be a surface of finite type; that is, S is topologically equivalent to a 

compact Riemann surface of genus g __> 0 with (m - n) > 0 punctures. We assume 

that 
2g + (m - n) > 3. 

(This excludes certain cases that can be handled by different and simpler methods.) 

Fix n > 0 distinct points on S: x~,'",Xn. 

DEFIr~ITION 6.1. Let ~,Y' (g ,m-  n,n) denote the group of all orientation- 

preserving homeomorphisms of S onto itself which are homotopic to the identity 

by a homotopy keeping Xl, "", xn fixed, modulo those homeomorphisms that are 

homotopic to the identity on S ' =  S - { x t , ' " , x n } .  

Applying our previous work, let us obtain a description of . ~ ( g , m -  n,n). 

It suffices (by a theorem of Bers I-6]) to consider only quasiconformal auto- 

morphisms w of S. 

Let ff = {G; z l, .-., zn} be an n-pointed Fuchsian group. Let h and F have the 

same meaning as in Section 4. Consider the group 

aY'(ff) = (# e M(G);/~ ,,~ 0(~))/{/~ e M(G); h -  'p ,,, 0(F)}. 

PROPOSITION 6.2. I f  G has signature (g;~2_',)" oo.),�9 and ~ = {G; z~, ...,z~} is 

(m - n)-times 

an n-pointed Fuchsian group, then avto(ff) ~- .g'(g, m - n, n). 

THEOREM 6.3. We have for an arbitrary n-pointed Fuchsian group, 

�9 ;r "~ Cov h* "" nl(T(ff)) ~ zq(U "#) 

where, as usual, rq( - ) is the fundamental group o f ( - ) ,  and 

U"a ~ = {z = (zl, "", zn) ~ US; z, ~ g(zj) all g ~ G for i r j}  . 

COROLLARY 6.4. (i) (Epstein [18]). The group (g, m - 1, 1) is trivial. 

(ii) The group (g, m - 2 , 2 )  is a free group on countably many generators. 

Part (i) of Corollary 6.4 has also been obtained by Bers [91. Part (ii) is obtained 
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by considering the locally trivial fibration which is a projection on first (n - 1) 

coordinates, as shown in Fig. 3, where the fiber U' is U punctured at countably 

many points. This fibration induces a long exact sequence of fundamental groups 

that contains the portion 

-- '  rc i (U' )  -- '  "*  ~ ( U ~  ) --, ~ i ( U ~  " - l ) * )  --, ~ _ , ( U ' )  - ,  " - .  

rTn # have contractible universal covering spaces, Since U' and ,~ 

rti(U') = {0) = i~,~a j, i > 2 ,  n > l .  

Thus the previous exact sequence for i = 1 reduces to 

{o} -~ ~ l ( v ' )  - ,  ~l(t:~"# ) -~ ~ (v '~" -  1~*) -~ {o}. 

, (n- l)# 
U G 

Fig. 3 

Our result can be strengthened slightly. Let 

Mo((r ) = {# ~ M(G); g ~ 0((#)}. 

We again have a locally trivial fibration: 

Mo(f#) ~ M(G) 

T(ff). 

Using exact sequences as above, we obtain Theorem 6 . 5 .  

THEOREM 6.5. We have 

rq(Mo(f~)) = {0}, i > 1, 

~o(Mo(~r ~ ~(T(~)).  

COROLLARY 6.6. We have 

~ ( g ,  m - n, n) 
self-mappings of S homotopic to the identity modulo (xl,  "", x,) 

= sel f-mappingsofS isotopic to the identity modulo {xl,...,x~}" 

COROLLARY 6.7. The group Mo(~ ) is contractible if and only if n =0  or G is 

torsion free and n = 1. 
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The above theorem and its corollaries are similar to results of Earle and 

Eells [15]. 

7. Problems 

The theory outlined in the course of this paper presents more interesting 

problems than those we have solved. We present a few of them in the concluding 

section. 

PROBLEM 7.1. Classify up to biholomorphic equivalence the spaces 

T(g ; v D . . . , v,,,). 

If vj -> 2 for all j, then such a classification (as a consequence of Bers-Gree.lberg 

[ 113]) was obtained by Patterson [21]. 

PgOBLEM 7.2. Classify up to biholomorphic equivalence the spaces 

Fn(g; v~,.. . ,  Vm) and F~(g ; v , . . . ,  Vm). 

Here, of course, vj > 2 for all j. A partial result for n = 1 is contained in Earle- 

Kra [16]. 

PgOBLEM 7.3. What is the Kobayashi metric on Fn(g; v l , ' " ,  vm)? 

For T(g;  v t , " - ,vm)  with vj_>-2 for all j, Royden [22] showed that the 

Teichmi.iller and Kobayashi metrics agree. (See also Earle-Kra [16].) 

PROBLEM 7.4. Describe the automorphism group of F"(g; vi , . . . ,v,n ). 

A slightly more accessible problem might be to describe those automorphisms 

of F~(g; Vl," ' ,Vm) that are invariant under the natural projection 

n: Fn(g; vl, "",Vm)~ T(g; vl, "", vm); 

that is, those f for which the diagram shown in Fig. 4 is commutative. 

f 
F n ( g ; # i  . . . . .  v m) �9 Fn(g; v I . . . . .  v m) 

T(g ;  v I , . . . , , . ,m ) 

Fig. 4 

The description of the automorphism group of T(g;  v l , , . . ,  v,,) with vj > 2, has 

been obtained by Royden [22]. (See also Earle-Kra [16].) 
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PROBLEM 7.5. Classify all complex spaces X lying above R(#; h ,  ..', vm) and 

below T(g; vl,..., Vm); that is, all X for which the diagram shown in Fig. 5 is com- 

mutative. (The maps Pl, P2, rc are, of course, analytic.) 

T(g; ~'1 . . . . .  ~'m ) 

R[g;ul,  . . . ,  Vm~ 

Fig. 5 

PROBLEM 7.6. Determine all holomorphic cross sections 

s: T(g;  h , ' " ,  Vm) "-~ F"(g; v l , ' " ,  v,,,) 

of the holomorphic projection 

z: F"(g; vl, .", vm)~ T(g; h ,  "",Vm); 

tha t  is, all s as above  with 

n o  s = id.  

F o r  n = 1, a par t ia l  so lut ion has been ob ta ined  by H u b b a r d  1"19] and Earle-  

K r a  ['16]. 

ADDED IN PROOF 

I would like to thank C. J. Earle and M. Engber for pointing out errors in 

the preprint of this article. 
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